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W. Kleiner established (1964, Ann. Polon. Math. 14, 117�130) for smooth curves
and arcs an estimate for the discrepancy of a signed measure by using its energy
norm. We extend this result to quasiconformal curves and arcs. The proof uses the
theory of quasiconformal mappings and condenser theory. In a first step, the dis-
crepancy of a signed measure can be estimated from above in terms of its energy
norm and the capacity of a special condenser. This result is valid on every Jordan
curve. Examples show the sharpness of the results from various points of view.
� 2001 Academic Press

1. INTRODUCTION

Let E/C be a bounded Jordan curve or Jordan arc and let _ be a
signed Borel measure supported on E. The discrepancy of _ is defined by

D[_] :=sup |_(J)|,

where the supremum is taken over all subarcs J�E. If [&n] is a sequence
of Borel measures on E converging to a Borel measure + in the sense that
D[+&&n] � 0 as n � �, then [&n] converges to + in the weak-star sense.
Thus, the discrepancy between + and &n defined by D[+&&n] serves as a
measurement on the rate of the weak-star convergence.

In applications, frequently +=+E is the equilibrium measure of E [24,
p. 55] and &n=&pn

is the normalized zero counting measure of a polyno-
mial pn of degree n, i.e., the measure which associates the mass 1�n with
each of the zeros of pn , where every zero is counted according to its multi-
plicity.
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Usually, the discrepancy is estimated in terms of bounds for the
logarithmic potential U(_, z) of _ defined by

U(_, z) :=| log
1

|z&t|
d_(t).

Typical results can be found in [4, 5, 7�11, 23].
A completely different approach was chosen by Kleiner [16]. He used

the energy norm &_& of the signed measure _, which is defined by

&_&2 :=| | log
1

|z&t|
d_(t) d_(z),

to estimate the discrepancy of _. To state the result of Kleiner some preparing
definitions are necessary. Considering the set of measures

M+ (E) :=[+ : + is a positive measure with supp(+)�E],

we introduce a relation on M+ (E) be setting for +1 , +2 # M+ (E),

+1�+2 :� +1 (J)�+2 (J), \J�E, J Borel-measurable.

Furthermore let & # M+ (E) be a positive measure with continuous
logarithmic potential in C. For smooth E we define a modulus of con-
tinuity | of & by

|(=) :=sup[&(J) : J a subarc of E, l(J)�=], \=>0,

where l(J) denotes the arc length for all rectifiable subarcs J�E. The
inverse function is introduced by

|&1 (t) :=inf[l(J) : J a subarc of E, &(J)�t], \0<t�&(E).

Now, for signed measures _=_+&_& with _+, _& # M+ (E), that are
dominated by & such that for their total variation

|_| :=_++_&�&,

the discrepancy can be estimated as follows.

Theorem A (Kleiner [16]). Let E/C be a smooth Jordan curve or
smooth Jordan arc and & # M+ (E) with finite energy. For each signed
measure _�0 supported on E with

|_|�&, _(E)=0,

2 JOERG HUESING



there exist constants c>0 and M<1 only depending on E such that

(D[_])2�c &_&2 log
1

|&1 (M D[_])
.

Based on this theorem and its method of proof Kleiner developed a spe-
cial technique to obtain quantitative results for the distribution of Fekete
points on smooth Jordan curves [17]. This technique was a basic tool to
get asymptotic estimates about the distribution of extremal points in
Chebyshev approximation [10] and one of the starting points for con-
siderations to derive discrepancy estimates for signed measures if a lower
bound for the logarithmic potential is known [5].

It turns out that this interesting result of Kleiner can be extended to a
wider class of measures and a wider class of curves and arcs. Since the
original proof of Kleiner is very technical and difficult to follow we think
that our proof provides a completely different and more natural approach.
In particular, the dominating measure &, which is essential for the proof of
Kleiner, isn't needed.

2. MAIN RESULTS

Let K1 , K2 /C be disjoint compact sets and let M1
+(Ki) denote the

collection of all unit Borel measures in M+ (Ki), i=1, 2. Introducing

M1 (K1 , K2) :=[_=_K1
&_K2

: _K1
# M1

+(K1), _K2
# M1

+(K2)],

we define the modulus of the condenser (K1 , K2) by

mod(K1 , K2) :=inf[&_&2 : _ # M1 (K1 , K2)]

and by

cap(K1 , K2) :=
1

mod(K1 , K2)

its capacity (see [6]). If mod(K1 , K2)<�, there exists a unique measure
{={K1

&{K2
# M1 (K1 , K2) such that

mod(K1 , K2)=&{&2.

The measure { is called the equilibrium measure of (K1 , K2). If C� "K1

and C� "K2 are simply connected sets, then 0 :=C� "[K1 _ K2] is doubly
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connected. Hence, if K1 and K2 are not degenerated to single points, there
exists a conformal mapping

f: 0 � AR :=[z # C : 1<|z|<R]

[14, Chap. V]. Moreover,

R=emod(K1, K2)

[24, III.13] and, consequently,

cap(K1 , K2)=
1

log R
.

In particular, if �K1 and �K2 are Jordan curves or Jordan arcs, then f &1

can be extended continuously to a function f &1: A� R � 0� . To state some
needed properties of the equilibrium measure {={K1

&{K2
, we assume

without loss of generality that

f &1 ([z # C : |z|=R])=�K1 .

If �K1 is a Jordan curve, we have for any subarc J/�K1 ,

{K1
(J)=

1
2?R

l( f (J)). (2.1)

If �K1 is a Jordan arc, there exist for any subarc J/�K1 two preimages,
i.e., arcs J$, J"/[z # C : |z|=R] such that f &1 (J$)= f &1 (J")=J and
J$ & J" consists of at most two points. In this case

{K1
(J)=

1
2?R

(l(J$)+l(J")). (2.2)

Analogous results are valid for {K2
(for proofs see [15, Sects. 4.2 and 4.3]).

Now, let E be some Jordan curve and _=_+&_& a signed measure on
E with _(E)=0 and finite logarithmic energy. Further, we assume that _+

and _& have no point mass, i.e., _\ ([z])=0, \ z # E. Since E is some
Jordan curve, we need to introduce a modified modulus of continuity of
_+. Let

|+ (=)=|+ (_+; =) :=sup [_+ (J) : J a subarc of E, diam(J)�=],
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\ =>0, and

|&1
+ (t)=|&1

+ (_+; t) :=inf[diam(J) : J a subarc of E, _+ (J)�t],

\ 0<t�_+ (E).
The main results will use a special partition of E which we introduce

first. Defining m :=D[_], there exists a closed subarc J/E, such that

diam(J)� 1
4 diam(E), diam(E2)� 1

4 diam(E), (2.3)

where E2 :=E"J, and without loss of generality

_(J)� 3
8m. (2.4)

This partition can be obtained as follows: We can choose a subarc J1 /E,
such that |_(J1)|� 3

4 m and diam(J1)� 1
2 diam(E). In selecting two points

z1 , z2 # J1 with |z1&z2 |=diam(J1), it is possible to fix a point z3 # J1 lying
between z1 and z2 such that

|zi&z3 |� 1
2 diam(J1), i=1, 2.

z3 divides J1 in two subarcs J1, 1 and J1, 2 with

diam(J1, i)� 1
2 diam(J1)� 1

4 diam(E), i=1, 2.

Since _(E)=0, we can assume without loss of generality _(J1, 1)� 3
8 m

(otherwise _(E"J1, 1)� 3
8 m). Hence, J :=J1, 1 has the desired properties

(2.3) and (2.4).
Next, since we assume that _+ and _& have no point mass, we can

divide J into three closed subarcs L1 , E1 and L2 , that are disjoint except
for their endpoints, such that

0<diam(L1)=diam(L2)= 1
2|&1

+ ( 1
8m)�diam(E1), (2.5)

where L1 and L2 include the endpoints of J. By virtue of (2.4) we have

_(E2)� & 3
8m, _+ (L1)� 1

8 m and _+ (L2)� 1
8m. (2.6)

Finally (2.3) and (2.5) yield

diam(E1)� 1
12 diam(E).

Now, we are in position to formulate the first theorem.

Theorem 1. Let E/C be a Jordan curve and _=_+&_& a signed
measure on E with _(E)=0, finite energy and such that _\ ([z])=0, \ z # E.
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There exist disjoint, closed subarcs E1 and E2 of E with diam(Ei)�
1
12 diam(E), i=1, 2, and

min[diam(E1), diam(E2)]�diam(Li)= 1
2|&1

+ ( 1
8 D[_]), i=1, 2,

where L1 and L2 are subarcs with L1 _ L2 :=E"[E1 _ E2], such that

D[_]�c &_& - cap(E1 , E2)

with an absolute constant c>0.

A similar result can be proved for Jordan arcs.
To obtain the desired results that extend Theorem A we give upper and

lower estimates for the capacity of the condenser (E1 , E2) for the case of
a quasiconformal curve E.

We recall that, by definition, a K-quasiconformal (K �1) or briefly quasi-
conformal curve is the image of the unit circle under some K-quasiconformal
mapping F: C� � C� [1, 19]. Any subarc of a K-quasiconformal curve is
called a K-quasiconformal or briefly a quasiconformal arc.

There exists a geometric characterization of quasiconformal curves [19]
and arcs [21]. For example, for curves it can be formulated as follows:
E is a quasiconformal curve if and only if there exists a constant c>0,
depending only on E, such that for z1 , z2 # E,

min[diam(E$), diam(E")]�c |z1&z2 |, (2.7)

where E$ and E" denote the two arcs of which E"[z1 , z2] consists.
Moreover, the constant c and the coefficient of quasiconformality K of E
are mutually dependent.

Using this criterion, one can easily verify that convex curves, curves of
bounded variation without cusps and rectifiable Jordan curves which have
locally the same order of arc length and chord length are quasiconformal.
On the other hand, it is of interest to know, that a quasiconformal curve
can be everywhere nonrectifiable.

Lemma 2. Let E/C be a K-quasiconformal curve and E1 , E2 disjoint,
closed subarcs of E with diam(E i)� 1

12 diam(E), i=1, 2. Defining subarcs
L1 and L2 with L1 _ L2 :=E"[E1 _ E2] such that for $ :=diam(L1)=
diam(L2),

$�min[diam(E1), diam(E2)] and $� 1
2 diam(E),
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there exist constants C1 , C2>0 only depending on K, such that

C1 log
k
$

�cap(E1 , E2)�C2 log
k
$

(2.8)

with k :=diam(E).

Combining Theorem 1 and Lemma 2 we can prove the following
Theorem 3, which gives the desired estimate.

Theorem 3. Let E/C be a K-quasiconformal curve or K-quasiconfor-
mal arc and _=_+&_& be a signed measure on E with _(E)=0, finite
energy and such that _\ ([z])=0, \ z # E. There exists a constant c>0 only
depending on K, such that

D[_]�c &_& �log
2k

|&1
+ ((1�8) D[_])

, (2.9)

with k :=diam(E).

We would like to remark that the formulation of Theorem 3 is
completely independent from the geometric construction that Theorem 1
and Lemma 2 are based on.

Remark. The restriction \ z: _\ ([z])=0 in Theorem 3 can be removed.
Indeed, otherwise we may apply Theorem 3 to the Jordan decomposition
_=++&+& and use the fact that

|&1
+ (_+; t)�|&1

+ (++; t).

The following theorem shows that inequality (2.9) is sharp up to the
constant. In particular, the term including the inverse of the modulus of
continuity cannot be removed.

Theorem 4. For every K-quasiconformal curve E/C with (w.l.o.g.)
diam(E)=1 there exist a constant c=c(K)>0 and a (non-trivial) family
(_$)0<$<$0

of signed measures satisfying the assumptions of Theorem 3 such
that

D[_$]
&_$ &

� 0 as $ � 0

and

D[_$]
&_$ &

�c �log
1

|&1
+ ((1�8) D[_$])

, 0<$<$0 .
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Finally, we would like to discuss the requirement of quasiconformality in
Theorem 3. To this end, we consider a function g # C1[0, 1] with

g( j) (x)>0, \ 0<x<1, (2.10)

lim
x � 0+

g( j) (x)=0 (2.11)

for j=0, 1. In addition, we suppose that g$ is Dini-smooth, i.e.,

| g$(x2)& g$(x1)|<h(x2&x1), \ 0�x1<x2�1, (2.12)

where h is an increasing function with

|
1

0

h(x)
x

dx<�.

Using g we define a closed Jordan curve E as

E1 :=[z=x+iy : 0�x�1, y= g(x)],

E2 :=[z=x+iy : 0�x�1, y=&g(x)],
(2.13)

E3 :=[z : |z|= |1+ig(1)|, |arg (z)|�arg (1+ig(1))],

E :=E1 _ E2 _ E3 .

It is obvious that E possesses a cusp in the origin. Hence, by virtue of (2.7),
E is not quasiconformal.

Theorem 5. The assumption on quasiconformality in Theorem 3 is essen-
tial. More precisely, for every function g as in (2.10), (2.11) and (2.12) and
the corresponding (non-quasiconformal curve) E as in (2.13), there exist con-
stants C1 , C2>0, depending only on E, and a familiy (_=)0<=<=0

of signed
measures, which are the difference of unit measures on E, such that

&_=&2 log
diam(E)

|&1
+ ((1�8) D[_=])

�C1 - = - g(=) log
1
=

(2.14)

and

(D[_=])2�C2=, \ 0<=<=0 . (2.15)

Thus, an estimate like (2.9) cannot be proven, since g can be chosen to tend
to zero arbitrarily fast.
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3. SOME PROPERTIES OF MODULI OF FAMILIES OF
CURVES AND A BASIC LEMMA

We intend to use the notion of a module m(1 ) of a family of curves 1
(for definition and properties, cited below, see [1, 3, 19]). This quantity is
a conformal invariant and satisfies the following property, known as the
comparison principle. Let 1 $ and 1" be two families of curves. If for any
#$ # 1 $ there exists #" # 1" with #"�#$ (we write 1 $>1"), then

m(1 $)�m(1"). (3.1)

In addition, we need another property: Let 01 and 02 be two disjoint open
sets in C� and 11 resp. 12 families of curves in 01 resp. 02 . Then for the
moduli we have

m(11 _ 12)=m(11)+m(12). (3.2)

For later use we need to prove the following lemma.

Lemma 3.1. Let E/C be a Jordan arc. Dividing E in 3 closed, except
for common endpoints disjoint subarcs E1 , L and E2 , where E1 and E2 denote
the subarcs containing the endpoints of E and diam(Ei)�diam(L), i=1, 2,
we have

cap(E1 , E2)�
1

16?2 .

Proof. 0 :=C� "[E1 _ E2] is doubly connected. Hence, there exists a
conformal mapping

f: 0 � AR :=[z # C : 1<|z|<R], (3.3)

where

cap(E1 , E2)=
1

log R
. (3.4)

Let 1 denote the family of all Jordan curves #/C� , which separate E1 and
E2 (see Fig. 1). It is well known that

m(1 )=m( f (1 ))=
1

2?
log R, (3.5)
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FIGURE 1

where f (1 ) :=[ f (#) : # # 1]. Hence, it is enough to find a suitable upper
estimate for m(1 ). To do so, we need to define some admissible function
\. Setting di :=diam(Ei) for i=1, 2, we choose `i :=Ei & L and define

\i (z) :={
1
di

, if |z&`i |<2di ,

0, elsewhere,

and

\(z) :=max[\1 (z), \2 (z)], \ z # C.

It can easily be checked that for all # # 1,

|
#

\(z) |dz|�1.

Therefore, the definition of the module, (3.4) and (3.5) yield

m(1 )�|
C

\2 (z) dm(z)�|
C

\2
1(z) dm(z)+|

C

\2
2(z) dm(z)

=
1

d2
1
|

2d1

0
r |

2?

0
d� dr+

1
d2

2
|

2d2

0
r |

2?

0
d� dr=8?,

where dm(z) denotes the 2-dimensional Lebesgue measure. K

4. PROOF OF THEOREM 1

Throughout this proof we denote by C a positive, absolute constant
which can obtain different values in different occurrences.
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Using the invariance of the discrepancy and the energy norm of signed
measures with total mass 0 with respect to linear transformations we can
assume without loss of generality that

E/[z # C : |z|� 1
2].

We introduce the doubly connected domain 0 :=C� "[E1 _ E2] and the
conformal mapping f: 0 � AR as in (3.3). There exists a continuous exten-
sion of f &1 to A� R for which we assume without loss of generality that
f &1 ([z # C : |z|=R])=E2 . For =>0 sufficiently small we define the
annulus

AR, = :=[z # C : 1+=�|z|�R&=]

and a function g1 by

g1 (z) :=
log |z|&log(1+=)

log(R&=)&log(1+=)
, \ z # AR, = .

Then

0�g1 (z)�1, \ z # AR, = ,

g1 (z)=1, \ z with |z|=R&=,

g1 (z)=0, \ z with |z|=1+=.

For later use we notice that

|
AR , =

|grad g1 (z)| 2 dm(z)=
1

(log((R&=)�(1+=)))2 |
AR , =

1
|z|2 dm(z)

=
2?

log((R&=)�(1+=))
. (4.1)

If 0= :=f &1 (AR, =), its complement in C� consists of two open sets E1, = and
E2, = , which contain E1 and E2 , respectively. We consider in C� the function
g2 given by

g2 (z) :=g1 ( f (z)), \ z # 0= ,

g2 (z) :=0, \ z # E1, = ,

g2 (z) :=1, \ z # E2, = .
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g2 is continuous in C� and its gradient can be extended continuously from
both sides to �0= . Thus, we have

g2 # C1 (0=) and g2 # C� (Ei, =), i=1, 2.

In choosing a continuously differentiable function g3 (z)= g3 ( |z| ) with

0�g3 (z)�1, \ z # C,

g3 (z)=1, \ |z|�1,

g3 (z)=0, \ |z|�2,

we consider the function g(z) :=g2 (z) g3 (z) which satisfies

0�g(z)�1, \ z # C� ,

g(z)=1, \ z # E2, = , (4.2)

g(z)=0, \ z # E1, = .

The function g can be represented as

g(z)=&
1

2? |
C

grad g(`) grad` log |z&`| dm(`), (4.3)

where we use the standard inner product in R2. We skip the proof of (4.3)
for it is only a simple application of Green's formulas.

Using (2.6) and (4.2), (4.3), Fubini's theorem and Ho� lder's inequality,
we obtain

1
8

m� } |E
g(z) d_(z)}= } 1

2? |
E
| grad g(`) grad` log |z&`| dm(`) d_(z)}

= } 1
2? | grad g(`) grad U(_, `) dm(`) }

�_| |grad g(`)| 2 dm(`)&
1�2

_ 1
4?2 | |grad U(_, `)| 2 dm(`)&

1�2

. (4.4)

In addition, the inequality of Minkowski, (4.1) and the fact that
� |grad g1| 2 dm is a conformal invariant with respect to f yield
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_| |grad g(`)| 2 dm(`)&
1�2

=_| | g3 (`) grad g2 (`)+ g2 (`) grad g3 (`)| 2 dm(`)&
1�2

�_| |grad g2 (`)|2 dm(`)&
1�2

+_| |grad g3 (`)|2 dm(`)&
1�2

=_| |grad g1 (`)|2 dm(`)&
1�2

+C

=\ 2?
log((R&=)�(1+=))+

1�2

+C�C \ 2?
log((R&=)�(1+=))+

1�2

, (4.5)

where the constants C>0 are absolute under consideration of Lemma 3.1
and (3.4). Finally, since

| |grad U(_, `)|2 dm(`)=4?2 &_&2,

(see [18, Theorem 1.20]), we obtain with (4.4), (4.5) and letting = � 0,

1
8

m�C &_& \ 2?
log R+

1�2

.

Hence, (3.4) yields

D[_]�c &_& - cap(E1 , E2)

with an absolute constant c>0. K

5. SOME AUXILIARY FACTS FROM THE THEORY OF
QUASICONFORMAL MAPPINGS

Let E/C be a K-quasiconformal curve and F be the corresponding
quasiconformal mapping, which maps the unit circle onto E such that
F(�)=� and F(0)=z0 # int(E). Let 8 denote the conformal mapping of
the unbounded component ext(E) of C� "E onto

2 :=[z # C� : |z|>1],

such that 8(�)=� and 8$(�)>0. In addition, we consider the confor-
mal mapping . of int(E) onto the unit disk D, such that .(z0)=0 and
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.$(z0)>0. Since E is quasiconformal, . and 8 can be extended to
quasiconformal mappings of the extended complex plane C� onto itself, such
that .(�)=� and 8(z0)=0 [1].

Hence, for later use, we cite the following results for conformal and
quasiconformal mappings.

Lemma 5.1 [4, Lemma 1]. Let g be a conformal mapping of a region
G1 /C onto a region G2 /C. Then, for each z # G1 ,

1
4

dist(g(z), �G2)
dist(z, �G1)

�| g$(z)|�4
dist(g(z), �G2)

dist(z, �G1)
.

Lemma 5.2 [2, Lemma 1]. Let |=G(z) be a K� -quasiconformal map-
ping from C� onto C� with G(�)=�. For zj # C and |j=G(zj), j=1, 2, 3,
the inequality ||1&|2 |�c1 ||1&|3 | implies

(a) |z1&z2 |�c2 |z1&z3 |,

(b) |
(z1&z3)
(z1&z2)|�c3 |

(|1&|3)
(|1&|2)|

K�

with constants ci=ci (c1 , K� ), i=2, 3.

Corollary 5.3. Since G&1 is also a K� -quasiconformal mapping from C�
onto C� with G&1 (�)=�, the inequality |z1&z2|�c1 |z1&z3| implies

(a) ||1&|2|�c2 ||1&|3|,

(b) |
(|1&|3)
(|1&|2)|�c3 |

(z1&z3)
(z1&z2)|

K�

with constants ci=ci (c1, K� ), i=2, 3.

6. PROOF OF LEMMA 2

In the sequel, we denote by C a positive constant which depends only on
K and which can obtain different values in different occurrences.

First, we assume that

E/[z # C : |z|� 1
2].

Let 0 :=C� "[E1 _ E2] and f : 0 � AR be the conformal mapping as in
(3.3). For points `$ and `" of L1 with

|`$&`"|=$,
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we choose points `1 # L1 , such that

$
2

�|`$&`1|=|`"&`1|�$, (6.1)

and `2 # L2 analogously.
Considering the points |1 :=8(`1), |2 :=8(`2) and |~ 1 :=.(`1),

|~ 2 :=.(`2) we define a closed Jordan curve 1 through `1 and `2 as follows.
If |1=ei�1, |2=ei�2 and |~ 1=e i�� 1, |~ 2=ei�� 2 (where without loss of

generality 0��1<�2<2?, 0��� 1<�� 2<2?), we set

1 $1, j :=[| # C : |=rei�j, 1�r�2], j=1, 2,

1 $1, 3 :=[| # C : |=2ei�, �1����2],

1 $1 :=1 $1, 1 _ 1 $1, 2 _ 1 $1, 3 ,

1 $2, j :=[| # C : |=rei�� j, 1
2�r�1], j=1, 2,

1 $2, 3 :=[| # C : |= 1
2ei�, �� 1����� 2],

1 $2 :=1 $2, 1 _ 1 $2, 2 _ 1 $2, 3 ,

and 11 :=8&1 (1 $1), 12 :=.&1 (1 $2), and 1 :=11 _ 12 (see Fig. 2).
In what follows we want to use this choice of 1 to show that 1

R&1 , which
behaves similar to cap(E1 , E2), can be estimated from above by log k

$ with
k :=diam(E). Using this inequality we can prove the right-hand inequality
in (2.8).

Let 1� :=f (1 ). We consider the integrals

I1 :=|
1

|d`|
dist(`, �0)

and I2 :=|
1�

|d!|
dist(!, �AR)

.

To compare both integrals we apply Lemma 5.1 to f, 0� :=0"[�] and
f (0�) to obtain

4I1=4 |
1

|d`|
dist(`, �0�)

=4 |
1�

|d!|
| f $(`)| dist(`, �0�)

�|
1�

|d!|
dist(!, �f (0�))

�|
1�

|d!|
dist(!, �AR)

=I2 . (6.2)

Since dist(!, �AR)� R&1
2 for each ! # 1� , we have

I2=|
1�

|d!|
dist(!, �AR)

�|
2?

0

d�

(R&1)�2
=

4?
R&1

. (6.3)
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FIGURE 2

With (6.2) and (6.3) it remains to find an upper bound for I1 in order to
give an upper estimate for 1

R&1. Thus, to consider first

|
11, 1

|d`|
dist(`, �0)

,

we need the following lemma.

Lemma 6.1. Denoting for each ` # 11, 1 the subarc of 11, 1 between `1 and
` with 11, 1 (`1 , `), there exist constants ci=ci (K)>0, i=1, 2, such that for
each ` # 11, 1 ,

c1 |`&`1|�dist(`, E)�|`&`1| (6.4)

and

|`&`1|�l(11, 1 (`1 , `))�c2 |`&`1|. (6.5)

Inequality (6.4) can be proved with standard arguments using the
quasiconformality of E. For the proof of (6.5) we refer the reader to [12,
p. 48].

To find an upper estimate for the integral above, we define |$ :=8(`$)
and |" :=8(`"). Since

||$&|1|�2 ||1&2ei�1|,

Lemma 5.2 and (6.1) yield

$
2

�|`$&`1|�c1 |`1&8&1 (2ei�1)|�c1 l(11, 1)
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with c1=c1 (K). Hence we can choose a subarc #1 of 11, 1 of length 1
2c1

$
with `1 as one of its endpoints and we have

|
11, 1

|d`|
dist(`, �0)

=|
#1

|d`|
dist(`, �0)

+|
11, 1"#1

|d`|
dist(`, �0)

.

To give an estimate for the first integral of the right-hand side we set
#$1 :=8(#1) and assume without loss of generality (the other case can be
treated similarly) that

||&|$|�||&|"|, \ | # #$1 .

Let ` # #1 and | :=8(`) # #$1 . Defining L$1 :=8(L1), we obtain for each
|~ # �D"L$1 ,

||&|$|�||&|~ |.

Hence, Lemma 5.2 yields

|`&`$|�C dist(`, �0). (6.6)

On the other hand

||&|$|�||1&|$|,

and, consequently, using Lemma 5.2 and (6.1) we get

$
2

�|`1&`$|�C |`&`$|. (6.7)

The estimates (6.6) and (6.7) imply

dist(`, �0)�C
$
2

, \ ` # #1 ,

which leads to

|
#1

|d`|
dist(`, �0)

�
C
$

l(#1)�C. (6.8)

To estimate the other integral, Lemma 6.1 yields

|
11, 1"#1

|d`|
dist(`, �0)

�C |
11, 1"#1

|d`|
l(11, 1 (`1 , `))

�C log
k
$

. (6.9)
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Hence, with (6.8) and (6.9) we get

|
11, 1

|d`|
dist(`, �0)

�C log
k
$

.

Since 11, 3 is a subarc of a level line of the Green's function of ext(E) with
pole at �, we have

|
11, 3

|d`|
dist(`, �0)

�C.

The integral over 11, 2 behaves like that over 11, 1 . Thus, we get

|
11

|d`|
dist(`, �0)

�C log
k
$

.

Since the case of 12 can be handled in the same way, we obtain

I1=|
1

|d`|
dist(`, �0)

�C log
k
$

. (6.10)

Consequently, (6.2), (6.3) and (6.10) yield

4?
R&1

�C log
k
$

, (6.11)

which is the desired estimate for 1
R&1 .

The next step is to find an appropriate lower bound for 1
R&1 . To this

end, we define z� :=f (�) and assume without loss of generality (the other
case can be treated similarly) that

|z� |�
R+1

2
.

In setting

1� :={z # C : z=\1+
R&1

8 + ei�, 0���2?=
and 1 :=f &1 (1� ) we want to make use of the integrals

I1 :=|
1

|d`|
dist(`, �0)

and I2 :=|
1�

|d!|
dist(!, �AR)

.
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To compare both integrals we apply Lemma 5.1 to f, A�
R :=AR"[z�] and

f &1 (A�
R ) to obtain

4I2=4 |
1�

|d!|
dist(!, �A�

R )
�|

1�

|d!|
| f $(`)| dist(`, �f &1 (A�

R ))

=|
1

|d`|
dist(`, �f &1 (A�

R ))
=|

1

|d`|
dist(`, �0)

=I1 . (6.12)

By virtue of the equality

I2=
8

R&1 |
2?

0

R+7
8

d�=2?
R+7
R&1

, (6.13)

it remains to find an estimate from below for I1 . In choosing `0 # 1 & E we
have for each ` # 1,

dist(`, �0)�dist(`0 , �0)+|`0&`|

�$+l(1(`0 , `)),

where 1(`0 , `) denotes a subarc of 1 with endpoints `0 and `. All subarcs
1(`0 , `) are chosen with the same orientation. Consequently, we get

I1�|
1

|d`|
$+l(1(`0 , `))

=|
l(1)

0

ds
$+s

=log
$+l(1 )

$
.

The assumptions on E1 and E2 yield l(1)� 1
6 diam(E) and we obtain

I1�C log
k
$

. (6.14)

Finally, (6.12), (6.13) and (6.14) lead to the desired inequality

log
k
$

�C
R+7
R&1

. (6.15)

Since by Lemma 3.1, R is bounded from above by an absolute constant, we
have

C
1

log R
�

1
R&1

�
1

log R
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with an absolute constant C>0. Hence, (3.4), (6.11), and (6.15) yield

C1 log
k
$

�cap(E1 , E2)�C2 log
k
$

.

It remains to consider the case diam(E)>1. In defining a new quasiconfor-
mal curve

E� :={`=
z

diam(E)
: z # E=

the proof of the first part can be repeated with E� . But then the desired
estimates are also valid for E since shrinking leaves the problem invariant.

K

7. PROOF OF THEOREM 3

If E is a quasiconformal curve, Theorem 3 follows by combining
Theorem 1 and Lemma 2. Therefore, we consider only the case when E/C
is a quasiconformal arc. Then, there exists a K-quasiconformal mapping F1

from C� onto C� such that F1 (�)=� and F1 (E)=[0, 1]. Let

Q :=[z=x+iy : 0<x<1, 0< y<1].

�Q is a K1-quasiconformal curve, i.e., there exists a K1-quasiconformal
mapping F2 from C� onto C� with F2 (�)=� and F2 (�D)=�Q. Setting

F3 (z) :=F &1
1 (F2 (z)), \z # C� ,

we obtain a K1K-quasiconformal mapping with F3 (�)=� and E/
F3 (�D). Hence E$ :=F3 (�D) is a K1K-quasiconformal curve. Considering _
as a signed measure on E$, we obtain with Theorem 1 and Lemma 2,

D[_]�c1 &_& �log
2k$

|&1
+ ((1�8) D[_])

, (7.1)

where k$ :=diam(E$) and c1>0 depends only on K. It remains to show
that k$ can be replaced by k in (7.1).

It suffices to show that

C diam(E$)�diam(E)�diam(E$). (7.2)
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Let z1 and z2 denote the endpoints of E. We choose `1 # E such that

|`1&z1|� 1
2 diam(E).

Since

|F1 (`1)&F1 (z1)|�|F1 (z1)&F1 (z2)|,

Lemma 5.2 implies

diam(E)�|z1&z2 |�C |`1&z1|�
C
2

diam(E).

Analogously,

C diam(E$"E)�|z1&z2 |�diam(E$"E).

Hence, we obtain (7.2). Finally, (7.1) and (7.2) lead to

D[_]�c1 &_&�log
2 diam(E$)

|&1
+ ((1�8) D[_])

�c1 &_& �log
2Ck

|&1
+ ((1�8) D[_])

�c &_& �log
2k

|&1
+ ((1�8) D[_])

. K

8. PROOF OF THEOREM 4

Let E/C be some K-quasiconformal curve with diam(E)=1. We will
use condenser theory to construct a family of signed measures (_$)0<$<$0

for which (2.9) is sharp up to the constant.
For 0<m<1�2 choose disjoint, closed subarcs L1 , L2 /E, such that

diam(L1)=diam(L2)=e&8�m=: $, (8.1)

and

diam(Ei)� 1
12 diam(E), i=1, 2,

where E1 and E2 are the remaining subarcs with E1 _ E2 :=E"[L1 _ L2].
The subarcs E1 , E2 and L1 , L2 satisfy the assumptions of Lemma 2. Thus,
there exist constants 0<c1<1 and c2>0 only depending on K, such that

c1 log
1
$

�cap(E1 , E2)�c2 log
1
$

. (8.2)
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To construct the desired signed measure _$ we consider the equilibrium
measure {={E1

&{E2
# M1 (E1 , E2), i.e.,

&{&2=mod(E1 , E2). (8.3)

Defining _$ :=_+
$ &_&

$ by

_+
$ := 1

2 ({E1
+{E2

),

_&
$ :=( 1

2&m) {E1
+( 1

2+m) {E2
,

we have

m=D[_$]=m - mod(E1 , E2) - cap(E1 , E2)

=&_$& - cap(E1 , E2). (8.4)

To prove the desired estimate for _$ we need to estimate the inverse of the
modulus of continuity |+ of _+

$ from below. Introducing

|&1 ({Ej
, t) :=inf[diam(J) : J a subarc of Ej , {Ej

(J)�t],

for j=1, 2, we have

|&1
+ (t)�min[|&1 ({E1

, t), |&1 ({E2
, t)], \ 0<t�1. (8.5)

We claim that

log
1

|&1
+ ((1�8) m)

�c3 cap(E1 , E2) (8.6)

for some c3=c3 (K)>0, so that (8.4) and (8.6) yield

m=D[_$]�c &_$ & �log
1

|&1
+ ((1�8) m)

.

for some c=c(K)>0. Consequently, if (8.6) holds, inequality (2.9) is sharp
up to the constant for _$ .

To prove (8.6) it is enough to give appropriate lower bounds for
|&1 ({E1

, 1
8 m) and |&1({E2

, 1
8 m). Since the other case can be treated

similarly, we will without loss of generality derive the lower bound for
|&1 ({E1

, 1
8 m) only. Let J/E1 be some closed subarc and 1 be the family

of all Jordan arcs in 0 :=C� "[E1 _ E2] with endpoints on J and E2 (see
Fig. 3). By giving upper and lower estimates for the module m(1 ) we will
obtain the desired result.
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FIGURE 3

Let f: 0 � AR denote the conformal mapping of (3.3). Without loss of
generality we assume that

f &1(E1)=[z : |z|=1].

If J1 and J2 denote the two preimages of J with

J1=[ei� : �1, 1����1, 2],

J2=[ei� : �2, 1����2, 2],

(2.2), (3.1), (3.2) and an example in [3] yield

m(1)=m( f (1 ))�m([[rei� : 1<r<R] : �1, 1����1, 2])

+m([[rei� : 1<r<R] : �2, 1����2, 2])

=
�1, 2&�1, 1

log R
+

�2, 2&�2, 1

log R

=
2?{E1

(J)

log R
. (8.7)

To find an upper bound for m(1 ) consider two points z1 # E1 and z2 # E2 ,
such that

dist(E1 , E2)=|z1&z2|.

Since E is quasiconformal, (2.7) and (8.1) yield

|z1&z2|�c4 diam(L1)=c4 $

with c4=c4 (K)>0. Next, we restrict J such that

$1 :=diam(J)<
1

e1�c1
c4 $,
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and define for some z3 # J,

Az3
:=[z # C : $1<|z&z3 |<c4 $].

Let 11 denote the family of all Jordan arcs in Az3
which connect its bound-

ary elements. Then 1>11 and, consequently, with (3.1),

m(1)�m(11)=
2?

log(c4 $�$1)
<c12?. (8.8)

Now, by virtue of (8.1), (8.2), (8.7) and (8.8) we obtain

{E1
(J)<c1 log R=c1

1
cap(E1 , E2)

<
1

log(1�$)
=

m
8

,

and, therefore,

|&1 \{E1
,

m
8 +�c5 $ (8.9)

with c5=c5 (K)>0. Finally, Lemma 3.1, (8.2), (8.5), and (8.9) yield

log
1

|&1
+ ((1�8) m)

�log
1

c3$
�c3 cap(E1 , E2),

i.e., (8.6) holds.
Finally, we remark that $=e&8�m was chosen arbitrarily with

0<m<1�2. Hence, inequality (2.9) is sharp up to the constant for the
family of signed measures (_$)0<$<$0

with $0 :=e&16=e&8�m0 for m0 :=1�2.
In addition, the right-hand inequality in (8.2) yields

D[_$]
&_$ &

� 0 as $ � 0,

i.e., (2.9) is sharp up to the constant. K

9. PROOF OF THEOREM 5

In the following we denote by C>0 a constant depending only on E,
which obtains different values at different occurrences.
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Let g be some function with (2.10), (2.11) and (2.12) and let the Jordan
curve E be defined as in (2.13). For =0>0 sufficiently small, we choose
some 0<=<=0 and consider the subarcs

E+ :=E"[x+ig(x) : x # (0, =)],

E& :=E"[x&ig(x) : x # (0, =)],

and define _= :=+E+&+E& , where +E+ resp. +E& denote the equilibrium
measures of E+ resp. E& [24, p. 55].

To derive the inequalities (2.14) and (2.15) we need to prove some
helpful estimates. First, we show that for each

z # E= :=[x+ig(x) : x # [0, =]],

there holds

|U(+E+&+E& , z)|�c0 - g(=) (9.1)

with c0=c0 (E)>0. Let

8+ : C� "E + � 2

be the conformal mapping such that 8+ (�)=� and 8$+ (�)>0. Using
the fact, that U(+E+ , z) and U(+E& , z) are constant on E + and E&, respec-
tively, and using the symmetry of E+ and E& we get

U(+E+&+E& , z)=&log |8+ (z)|, \ z # E= . (9.2)

To get an estimate for 8+ (z) with z # E= , we consider the level lines of 8+ ,
which are defined as

Lu :=[z # C� "E+ : |8+ (z)|=1+u], u�0.

We have

dist(E+, Lu)�Cu2

(see [3, Corollary 2.7]). Supposing that there exists z # E= such that

|8+ (z)|>1+�2g(=)
C

, (9.3)

we would have

dist(z, E+)>2g(=),
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FIGURE 4

which is not possible. Hence (9.2) and the fact, that inequality (9.3) is
wrong for each z # E= , yield

|U(+E+ , z)&U(+E& , z)|=log |8+ (z)|

�log \1+�2g(=)
C +�c0 - g(=),

i.e., (9.1) holds.
Next, we show that there exist positive constants c1 and c2 , only depend-

ing on E, such that

c1 - =�+E& (E=)�c2 - =. (9.4)

Let 1 denote the family of all Jordan arcs in C� "E & with endpoints on E&

which separate E= from � (see Fig. 4).
If 8& denotes the conformal mapping of C� "E& onto 2 such that

8& (�)=� and 8$& (�)>0, there are two preimages E 1
= and E 2

= of E= .
Defining E$= :=E 1

= _ E 2
= , (2.1) yields

+E& (E=)=
1

2?
l(E$=),

and considering the inequalities (see [3])

1
?

log
2

l(E$=)
�m(1 )=m(8&(1 ))�2+

1
?

log
4

l(E$=)

we obtain

1
?

log
1

?+E& (E=)
�m(1 )�

1
?

log
2e2?

?+E& (E=)
. (9.5)
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In proving other upper and lower estimates for m(1 ) we will be able to
show (9.4). Let

A :=[z # C : |=+ig(=)|�|z|�1]

and let 11 denote the family of all Jordan curves in A, which separate the
boundary parts. Since 11>1 and since =0 was chosen sufficiently small, we
have with (3.1) and (2.11),

m(1 )�m(11)=
1

2?
log

1
|=+ig(=)|

�
1

2?
log

1
2=

, (9.6)

and obtain from (9.5) and (9.6) that

1
?

log
1

- 2=
�

1
?

log
2e2?

?+E& (E=)
.

Consequently,

+E& (E=)�c2 - =

with some absolute constant c2>0.
To prove the left-hand side inequality in (9.4) we consider the family 12

of all Jordan arcs in ext(E) with endpoints on E which separate E= and �.
Since 1>12 ,

m(12)�m(1 ). (9.7)

If 8 denotes the conformal mapping of ext(E) onto 2 such that 8(�)=�
and 8$(�)>0, we have under consideration of [20, Theorem 3.9],

m(12)=m(8(12))�2+
1
?

log
4

l(8(E=))
�2+

1
?

log
C

- =
. (9.8)

Finally, (9.5), (9.7) and (9.8) yield

1
?

log
1

?+E& (E=)
�

1
?

log
C

- =
,

i.e.,

c1 - =�+E& (E=)

holds with c1=c1 (E)>0.
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In applying the same methods which we used to prove the right-hand
inequality of (9.4) we get for each subarc J/E&,

+E& (J)�C - diam(J).

Hence, because of the symmetry of E + and E&,

|&1
+ (t)=inf[diam(J) : J a subarc of E, +E+ (J)�t]�Ct2, \ 0<t�1.

(9.9)

Now, (9.1), (9.4) and (9.9) yield

&_=&2=|
E

U(+E+ &+E& , z) d(+E+&+E&)(z)

=2 |
E=

|U(+E+&+E& , z)| d+E& (z)

�C - = - g(=). (9.10)

Finally, we obtain with (9.4)

(D[_=])2�C2=

with C2 :=c2
1>0. On the other hand, (9.9) and (9.10) yield

&_=&2 log
diam(E)

|&1
+ ((1�8) D[_=])

�C1 - = - g(=) log
1
=

,

for some C1=C1 (E)>0. K
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